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Introduction

The sum of two variables raised to a positive integer exponent obeys the binomial
expansion:

(x+ y)k =
k∑

n=0

(
k

n

)
xny(k−n)

Functions of binomial type are functions Qk(x) de�ned over integers k ≥ 0 and real
x that obey the analogous binomial expansion:

Qk(x+ y) =
k∑

n=0

(
k
n

)
Qn(x)Qk−n(y), and Q0(x) = 1.

In this paper, Qk(x) will be used to refer to a function of x, with functions of binomial
type being sequences of functions Qk(x) with k acting as an index for those functions.

Notice that:

Qk(x+ y) = Qk(x) +Qk(y) +
k−1∑
n=1

(
k

n

)
Qn(x)Qk−n(y)

The summation only contains Qs with positive subscripts lower than k, with no
reference to Qk. This leaves the coe�cient of x in Qk(x) not �xed, because

c(x+ y) = cx+ cy, so any cx may be added to Qk(x), and the function will remain
of binomial type from Q1 through Qk.

Assuming that Qk(x) is continuous in x, the linear term cx is the only term that is
not �xed in Qk(x). All other terms are determined by the functions Q1(x) through
Qk−1(x). As such, every function of binomial type can be expressed in terms of an
in�nite sequence that in this paper will be referred to as a, starting at a1, with each
element ak being the coe�cient of x inQk(x). To determine the correct general form it
will help to �rst assume that Qk(x) is a polynomial (which later we will prove must be

the case). Now letting y = x in the de�nition we get Qk(2x) =
k∑

n=0

(
k
n

)
Qn(x)Qk−n(x)

and if we plug Q1(x) =
∞∑
i=0

cix
i into that we can match up the coe�cients of x to

1



show that all the ci must be zero except c1. Repeating this process we get the general
form for the �rst 5 functions of binomial type as:

Q1(x) = a1x,

Q2(x) = a2x+ a21x
2,

Q3(x) = a3x+ 3a2a1x
2 + a31x

3,

Q4(x) = a4x+ 4a3a1x
2 + 3a22x

2 + 6a2a
2
1x

3 + a41x
4,

Q5(x) = a5x+ 5a4a1x
2 + 10a3a2x

2 + 10a3a
2
1x

3 + 15a22a1x
3 + 10a2a

3
1x

4 + a51x
5.

Notice that in every term, the subscripts of a add the the subscript of Q, and the
exponent of x is the number of a-variables multiplied together in the term (the con-
stant portions of the terms have a combinatorial explanation that will be explained
later). For instance, Q5(x) contains the term 10a3a1a1x

3. 3 + 1 + 1 = 5, and {3, 1,
1} contains 3 terms. Sequences of integers that add to n are known as partitions of
n. Every Qn contains one term for each partition of n. Now for some background on
partitions:

A partition is an unordered collection of positive integers, and may contain repeated
elements. In this paper, the lowercase letters r, s, and t will be used to represent
partitions. A subscript will be used to access the elements of a partition, as in: ri,
but because partitions are unordered, the subscript must only be an iterator, and all
elements must be treated symmetrically. For instance,

∑
i

ri refers to the sum of the

elements of r, but r3 and
∑
i

iri are meaningless. A magnitude sign will be used to

denote the number of elements in a partition. For instance, |r| refers to the number
of elements of r. #r(i) refers to the number of terms in r equal to i. I'll use an
example to help clarify the notation. Consider the partions of 8. Note that there are
22 such partitions, but let's consider r to be the particular one {3, 2, 2, 1}. Then we
have |r| = 4 and #r(1) = 1, #r(2) = 2, and #r(3) = 1.

With this notation, the general form for functions of binomial type, proved to be
correct later in this paper, can be written as:

Qk(x) =
∑

r such that∑
ri=k

k!
∏
i

(arix)∏
i

(ri!)
∏
i

#r(i)!∏
(arix) is a product of terms in the a sequence with the subscripts corresponding

to a partition r, times x|r|. The coe�cient is the number of unique ways of sorting
k objects into the partition r, without distinguishing between parts of the same size.

k!∏
i

(ri!)
is the multinomial coe�cient, which counts the number of ways of sorting k

objects into the partition r, distinguishing between parts of the same size.
∏
i

#r(i)!

is the product of the factorial of the number of terms in r of each value, and dividing
by this o�sets the fact that the multinomial coe�cient distinguishes between parts of
the same size. As an example, the term corresponding to the partition 3 + 1 + 1 is

5!a3a
2
1x

3

(3!1!1!)(2!1!) , which is indeed a term in Q5(x).
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This polynomial form is already known, and a proof can be found in The Umbral
Calculus by Steven Roman. This paper presents an alternative angle on the problem.
First I will prove that any function satisfying the polynomial form is of binomial type.
I will follow this with two proofs of the converse which states that all functions of
binomial type that are continuous in x can be written in the polynomial form for
some sequence ai.

Before presenting the proofs, the concept of a subpartition used in this paper must
be de�ned.

A subpartition s of r is de�ned as a partition such that all elements in s are also
included in r, and no number appears more often in s than in r. (Informally, a
subpartition is to a partition as a subset is to a set.) The complement of s within r
is de�ned as the partition t such that, for all i, #s(i) + #t(i) = #r(i). Whenever s
is explicitly de�ned as a subpartition of r, t will be used to denote the complement
of s within r.

Consider again the {3,2,2,1} partition of 8 example we used earlier. I used color to
distinquish between the two 2's, but this doesn't change the number of partitions of
8 since by de�nition the order of the parts doesn't matter. (i.e. {3,2,2,1} is the same
partition.) Distinguishing the elements will prove useful however when considering
the subpartitions since then the number of terms in∑
subpartions

s of r

( . . . ) is 2|r|, because every element in r can be included in s or not. (So

for example {3,2} and {3,2} are counted separately). It will also be useful to count
equivalent subpartitions only once. For this I will use the notation

∑
subpartions
s of r (eq)

( . . . )

where the ′eq′ indicates that we are including only one from among each set of equiv-
alent subpartions (for example, there is only one copy of {3,2} in the subpartitions of
{3,2,2,1} when counting in this manner). This of course will have fewer terms than
the general summation if there are repeated elements in the partition. Given a value
that appears in r n times, there are

(
n
m

)
di�erent ways to pick from those identical

elements to construct a subpartition of r that includes m of them. Therefore the
number of times each subpartition s is included in such a summation is:

∏
i

(
#r(i)
#s(i)

)
=

∏
i

#r(i)!∏
i

#s(i)!
∏
i

#t(i)!
which implies that:

∑
subpartions

s of r

( . . . ) =
∑

subpartions
s of r (eq)

( . . . )

∏
i

#r(i)!∏
i

#s(i)!
∏
i

#t(i)!
or conversely, that:

∑
subpartions
s of r (eq)

( . . . ) =
∑

subpartions
s of r

( . . . )

∏
i

#s(i)!
∏
i

#t(i)!∏
i

#r(i)!

The proof as well as the converse proof both use this fact.
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Proof

given: Qk(x) =
∑

r such
that∑
ri=k

k!
∏
i

(arix)∏
i

(ri!)
∏
i

#r(i)!
prove: Qk(x+ y) =

k∑
n=0

(
k

n

)
Qn(x)Qk−n(y).

We start out as we would if we were just proving the binomial theorem:

(x+ y)n = (x+ y) (x+ y) (x+ y) . . . (x+ y)︸ ︷︷ ︸
n of these

This product can be expanded by repeated application of the distributive law which
will yield 2n terms since for each of the (x+y) factors we must use either the x or the
y term. Recasting this in our language of partitions, let's choose r to be the partition
{1, 2, 3, . . . , n} and chose the subpartion s to include the ith element of r if we use
the x in the ith factor and not include that element if we use the y. So now we can
write:

(x+ y)|r| =
∑

subpartions
s of r

x|s|y|t|

Note that although we used a particular partition r the above equation is true for
any partition r because of our use of the more general method of summing over sub-
partitions. From this equation a simple counting step gives us the binomial theorem,
however we will take a di�erent path to achieve a more general result. We start by
muliplying both sides of the above equation by the product of the ai sequence:

(x+ y)|r|
∏
i

ari =
∑

subpartions
s of r

x|s|y|t|
∏
i

ari =
∑

subpartions
s of r

x|s|y|t|
∏
i

asi
∏
i

ati

∏
i

ari iterates |r| times, so this can be rewritten as:

∏
i

(ari(x+ y)) =
∑

subpartions
s of r

∏
i

(asix)
∏
i

(atiy) =
∑

subpartions
s of r (eq)

∏
i

(asix)
∏
i

(atiy)
∏
i

#r(i)!∏
i

#s(i)!
∏
i

#t(i)!∏
i

(ari(x + y)) appears in the polynomial form of Qk(x + y), so I can make the

substitution:

Qk(x+ y) =
∑

r such
that∑
ri=k

k!
∏
i

(ari(x+ y))∏
i

(ri!)
∏
i

#r(i)!
=

∑
r such
that∑
ri=k

 k!∏
ri!

∑
subpartions
s of r (eq)

∏
i

(asix)
∏
i

(atiy)∏
i

#s(i)!
∏
i

#t(i)!


= k!

∑
r such that∑

ri=k

∑
subpartions
s of r (eq)

∏
i

(asix)
∏
i

(atiy)∏
i

(ri!)
∏
i

#s(i)!
∏
i

#t(i)!

= k!
∑

r such that∑
ri=k

∑
subpartions
s of r (eq)

∏
i

(asix)∏
i

(si!)
∏
i

#s(i)!
·

∏
i

(atiy)∏
(ti!)

∏
i

#t(i)!
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Note that this double summation includes every possible pair of partitions s and t
such that

∑
i

si +
∑
i

ti = k, each appearing exactly once.

Thus, it can be rewritten:

Q(x+ y) = k!

k∑
n=0

∑
r such
that∑
ri=n

∏
i

(arix)∏
i

(ri!)
∏
i

#r(i)!

∑
r such
that∑
ri=k−n

∏
i

(ariy)∏
i

(ri!)
∏
i

#r(i)!

Now if we substitute k! =
(
k
n

)
n! (k − n)! and move it into the sumation we get:

Qk(x+ y) =
k∑

n=0

(
k

n

) ∑
r such
that∑
ri=n

n!
∏
i

(arix)∏
i

(ri!)
∏
i

#r(i)!

∑
r such
that∑
ri=k−n

(k − n)!
∏
i

(ariy)∏
i

(ri!)
∏
i

#r(i)!

=
k∑

n=0

(
k
n

)
Qn(x)Qk−n(y)

Q.E.D.

Proof of converse

It has already been shown that any function that satis�es the polynomial form is of
binomial type. Assuming that Qk(x) is continuous, each sequence a must uniquely
determine at most one function of binomial type, since every term in Qk(x) except
for the constant term is exactly de�ned from Q1(x) through Qk−1(x). Therefore, all
functions of binomial type that are continuous in x satisfy the polynomial form.
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Alternate proof of converse

Assume thatQk(x) is continuous in x. If f(x) is continuous and f(x+y) = f(x)+f(y),
then f(x) = cx. Therefore,

Q1(x+ y) = Q1(x) +Q1(y)

Q1(x) = a1x =
1!

1! 1!
a1x

The polynomial form holds true for Q1. Now using induction we assume:

Qk(x) =
∑

r such that∑
ri=k

k!
∏
i

(arix)[∏
i

(ri!)

]∏
i

#r(i)!

for all k < R

Let's de�ne: CR(x) = QR(x)−
∑
r such
that∑
ri=R

R!
∏
i

(arix)[∏
i

(ri!)

]∏
i

#r(i)!

such that CR(x) con-

tains no term of the form c ·x, since that would be included in the term aRx in QR(x)

We would have our result if we could prove that: CR(x) = 0

In the original equation, substitute: x → x
2 , y → x

2

Qk(x) =
k∑

n=0

(
k
n

)
Qn(

x
2 )Qk−n(

x
2 )

(
R

S

)
QS(

x

2
)QT (

x

2
) =

R!

S!T !


∑

s such
that∑
si=S

S!
∏
i

(asi
x
2 )[∏

i

(si!)

]∏
i

#s(i)!

 •


∑
t such
that∑
ti=T

T !
∏
i

(ati
x
2 )[∏

i

(ti!)

]∏
i

#t(i)!


where 0 < S < R; T = R− S(
R

0

)
Q0(

x

2
)QR(

x

2
) =

(
R

R

)
QR(

x

2
)Q0(

x

2
) = CR(

x

2
) +

∑
r such that∑

ri=R

R!
∏
i

(ari
x
2 )[∏

i

(ri!)

]∏
i

#r(i)!

QR(x) =
R∑

S=0

(
R

S

)
QS(

x

2
)QR−S(

x

2
)

= 2CR(
x

2
) +R!

R∑
S=0

∑
s such
that∑
si=S

∏
i

(asi
x
2 )[∏

i

(si!)

]∏
i

#s(i)!

∑
t such
that∑

ti=R−S

∏
i

(ati
x
2 )[∏

i

(ti!)

]∏
i

#t(i)!
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= 2CR(
x

2
) +R!

∑
r such
that∑
ri=R

∑
subpartions
s of r (eq)

∏
i

(asi
x
2 )[∏

i

(si!)

]∏
i

#s(i)!

·

∏
i

(ati
x
2 )[∏

i

(ti!)

]∏
i

#t(i)!

= 2CR(
x

2
) +R!

∑
r such
that∑
ri=R

∑
subpartions

s of r

∏
i

(asi
x
2 )[∏

i

(si!)

]∏
i

#s(i)!

·

∏
i

(ati
x
2 )[∏

i

(ti!)

]∏
i

#t(i)!

·

∏
i

#s(i)!
∏
i

#t(i)!∏
i

#r(i)!

= 2CR(
x

2
) +

∑
r such that∑

ri=R

R!
∏
i

(ari
x
2 )[∏

i

(ri!)

]∏
i

#r(i)!

∑
subpartions

s of r

1

= 2CR(
x

2
) +

∑
r such that∑

ri=R

2|r|R!
∏
i

(ari
x
2 )[∏

i

(ri!)

]∏
i

#r(i)!

= 2CR(
x

2
) +

∑
r such that∑

ri=R

R!
∏
i

(arix)[∏
i

(ri!)

]∏
i

#r(i)!

and from the de�nition of CR:

QR (x) = CR (x) +
∑

r such that∑
ri=R

R!
∏
i

(arix)[∏
i

(ri!)

]∏
i

#r(i)!

CR (x) = 2CR

(x
2

)
The coe�cient of x in QR (x)is not �xed. Since Qk(x) is continuous, CR(x) must also
be continuous, and thus all polynomials for which CR (x) = 2CR

(
x
2

)
are of the form

CR (x) = cx, but aR was de�ned in such a way that the coe�cient of x in CR (x)is 0.

CR (x) = 0

∴ Qk(x) =
∑

r such that∑
ri=k

k!
∏
i

(arix)[∏
i

(ri!)

]∏
i

#r(i)!

Q.E.D.
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